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At the 57th Modelica design meeting (May 25-28, 2008) a new fundamental 
type of connector variables "stream " was introduced for the next
Modelica Language Specification Version 3.1, because the two standard 
types of port variables used in all component oriented modeling systems

potential/flow, across/through, effort/flow variables

Part A Overview
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potential/flow, across/through, effort/flow variables

are not sufficient to model flow of matter in a reliable way.

Modelica_Fluid 1.0 is based on this new concept.

These slides give an introduction in to this new connector type and provide a 
rationale why it is introduced and the benefits of the concept.



1. Stream Variables and Stream Operators

Purpose

Reliable handling of convective mass and energy transport in
thermo-fluid systems with bi-directional flow of matter.

Relevant boundary conditions and balance equations are fulfilled in 

(convective) 
transport of matter

Overview and Rationale for Stream Connectors - Page 4

Relevant boundary conditions and balance equations are fulfilled in 
a connection point. 

mass and energy balance fulfilled
in the idealized connection point



Examples of an interface for fluid components

p absolute pressure potential variable

m_flow mass flow rate flow variable (describes transport of matter)

h specific enthalpy stream variable (quantity transported with matter)

Xi mass fraction stream variable (quantity transported with matter){

Overview and Rationale for Stream Connectors - Page 5

A stream variable hi of a connector i is associated with 
(a) a flow variable m_flow ("0 = Σ m_flowi") and
(b) a stream balance equation ("0 = Σ m_flowi*<upstream value of hi>")



value of stream variable hi in connector i

hi if flow from component to connection point (m_flowi ≤ 0)

inStream (hi) if flow from connection point to component (m_flowi > 0

actualStream (hi)
for both flow directions (= if m_flowi > 0 then instream (hi) else hi)
only to be used when absolutely necessary(!)

Reliable handling of bi-directional flow:
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h1

h2

h3

h4

h5

h6

inStream (h2)

inStream (h3) inStream (h5)

inStream (h4)

inStream (h1)

inStream (h6)

volume pressure drop pressure drop volume

Example of a volume – pressure drop network
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inStream (h1) = h2 = inStream (h3) = h4 = inStream (h5) = h6
inStream (h6) = h5 = inStream (h4) = h3 = inStream (h2) = h1

Energy balance in volume 1:

der (U1) = m_flow1*actualStream (h1)
= m_flow1*(if m_flow1 > 0 then inStream (h1) else h1)
= m_flow1*(if m_flow1 > 0 then h6 else h1)



2. Modeling with Streams

connector FluidPort
SI = Modelica.SIunits;
SI.AbsolutePressure        p             "Pressure in connection";
flow SI.MassFlowRate     m_flow        "Mass flow rate";
stream SI.SpecificEnthalpy h_outflow     "h if m_flow <= 0 ";
stream SI.MassFraction     X_outflow[nX] "X if m_flow <= 0 ";

end FluidPort;

Connector definition: 
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Modeling with stream variables is very simple (see following examples)!

For notational convenience, the equations for the mass fractions X
are not shown in the following examples.

If a connector has one or more stream variables, exactly one (scalar) flow
variable must be present which is the flow associated with all stream variables.



model MixingVolume "Volume that mixes two flows"
replaceable package Medium = Modelica.Media.Interfaces.PartialMedium;
FluidPort port_a, port_b;
parameter Modelica.SIunits.Volume V "Volume of device";
Modelica.SIunits.Mass             m "Mass in device ";
Modelica.SIunits.Energy           U "Inner energy i n device";
Medium.BaseProperties medium(preferredMediumStates= true);

equation
// Definition of port variables

Example: Mixing Volume
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// Definition of port variables
port_a.p         = medium.p;
port_b.p         = medium.p;
port_a.h_outflow = medium.h; 
port_b.h_outflow = medium.h;

// Mass and energy balance
m = V*medium.d;
U = m*medium.u;
der(m) = port_a.m_flow + port_b.m_flow;
der(U) = port_a.m_flow* actualStream(port_a.h_outflow) + 

port_b.m_flow* actualStream(port_b.h_outflow);
end MixingVolume;



model IsenthalpicFlow "No energy storage/losses, e.g. pre ssure drop, valve, ..."
replaceable package Medium=Modelica.Media.Interfaces.PartialMedium;
FluidPort port_a, port_b:
Medium.ThermodynamicState port_a_state_inflow "Stat e at port_a if inflowing";
Medium.ThermodynamicState port_b_state_inflow "Stat e at port_b if inflowing";

equation
// Medium states for inflowing fluid
port_a_state_inflow = Medium.setState_phX(port_a.p,

inStream(port_a.h_outflow));
port_b_state_inflow = Medium.setState_phX(port_b.p,

inStream(port_b.h_outflow));

Example: Isenthalpic fluid transport
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inStream(port_b.h_outflow));
// Mass balance
0 = port_a.m_flow + port_b.m_flow;

// Instantaneous propagation of enthalpy flow betwe en the ports with
// isenthalpic state transformation (no storage and  no loss of energy)
port_a.h_outflow = inStream(port_b.h_outflow);
port_b.h_outflow = inStream(port_a.h_outflow);

// (Regularized) Momentum balance
port_a.m_flow = f(port_a.p, port_b.p,

Medium.density(port_a_state_inflow),
Medium.density(port_b_state_inflow));

end IsenthalpicFlow;



model IsenthalpicFlow "No energy storage, e.g. pump, heat losses, ..."
replaceable package Medium = Modelica.Media.Interfaces.PartialMedium;
FluidPort port_a, port_b:
Medium.ThermodynamicState port_a_state_inflow "State at port_a if inflowing";
Medium.ThermodynamicState port_b_state_inflow "State at port_b if inflowing";
Modelica.SIunit.Power     P_ext "Energy flow via other connectors"

equation
// Medium states for inflowing fluid
port_a_state_inflow = Medium.setState_phX(port_a.p, inStream(port_a.h_outflow));
port_b_state_inflow = Medium.setState_phX(port_b.p, inStream(port_b.h_outflow));

// Mass balance

Example: Isentropic fluid transport
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// Mass balance
0 = port_a.m_flow + port_b.m_flow;

// Instantaneous propagation of enthalpy flow between the ports with
// isentropic state transformation
port_a.h_outflow = Medium.isentropicEnthalpy(port_a.p, inStream(port_b.h_outflow));
port_b.h_outflow = Medium.isentropicEnthalpy(port_b.p, inStream(port_a.h_outflow));

// Energy balanced to compute energy flow exchanged with other ports
0 = P_ext + port_a.m_flow* actualStream(port_a.h_outflow) 

+ port_b.m_flow* actualStream(port_b.h_outflow);

// (Regularized) Momentum balance
port_a.m_flow = f(port_a.p, port_b.p, Medium.density(port_a_state_inflow),

Medium.density(port_b_state_inflow));
end IsenthalpicFlow;



model TemperatureSensor "Ideal temperature sensor"
replaceable package Medium = Modelica.Media.Interfaces.PartialMedium;
FluidPort port( m_flow(min=0)); // No flow out of sensor ever
Modelica.Blocks.Interfaces.RealOutput T "Upstream t emperature";

equation
T = Medium.temperature(Medium.setState_phX(port.p, inStream(port.h_outflow));
port.m_flow    = 0;
port.h_outflow = Medium.specificEnthalpy(Medium.set State_pTX(

Medium.reference_p, Medium.reference_T)); 
// This value will never be used, since m_flow(min= 0),

Example: Temperature sensor
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// This value will never be used, since m_flow(min= 0),
// but it will show up in the plot window.

end TemperatureSensor;

Setting "m_flow.min=0" is very important, in order that the temperature sensor has
no influence on the stream that it measures, if all mass flow rates are zero; since then
"max (-port.m_flow,ε) = 0" in the inStream (..)-operators of the connected ports!!!
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model FixedBoundary_pT "Infinite reservoir with fixed pre ssure and temperature"
replaceable package Medium = Modelica.Media.Interfaces.PartialMedium;
FluidPort port;
parameter Medium.AbsolutePressure p "Boundary pressure";
parameter Medium.Temperature      T "Boundary temperature";

equation
port.p         = p;
port.h_outflow = Medium.specificEnthalpy(Medium.set State_pTX(p, T));

Example: Infinite Reservoir
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port.h_outflow = Medium.specificEnthalpy(Medium.set State_pTX(p, T));
end FixedBoundary_pT;



Part B Rationale

provide a rationale, why reliable bi-directional flow modeling
requires a third type of connector variable (streams),

The following slides
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discusses details of the connection semantics of streams, 

shows why stream connectors lead to reliable models. 



connector FluidPort
import SI = Modelica.SIunits;
SI.AbsolutePressure        p       "Pressure in con nection point";
flow SI.MassFlowRate     m_flow  "Mass flow rate";
stream SI.SpecificEnthalpy h       "Specific enthalpy";

end FluidPort;

Desired connector for bi-directional flow of matter. The intensive quantities
transported with the matter (like h) have the newly introduced "stream " prefix:

3. Basic Problems of Fluid Connectors
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Observation
This is the most simplest connector description form for the desired class of models
(independently how the connected components are described, e.g. lumped,
discretized PDE, PDE, ...). It is very unlikely that a "simpler" connector exists.

Goal
Define connection semantic of stream variables, so that the balance equations
for stream variables in an infinitesimal small connection point are fulfilled and
the equations can be solved reliably.



Central Question : What is the meaning of a stream variable, such as "h"?

Balance equations of stream variables for 3 connected components
(independently how the components are described, e.g. lumped, PDE, ...)

m1.h

m2.h

m3.h

m1.m_flow
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m1.h m3.h
h_mix

(1) 0 = m1.m_flow*( if m1.m_flow > 0 then h_mix else m1.h) +
m2.m_flow*( if m2.m_flow > 0 then h_mix else m2.h) +
m3.m_flow*( if m3.m_flow > 0 then h_mix else m3.h)

(2) 0 = m1.m_flow + m2.m_flow + m3.m_flow 

From the balance equations, it seems natural that the stream variables are one
of the occurring variables, e.g., h_mix or m1.h



but : then, the result will be of the form:

h_mix = if m1.m_flow > 0 then ... else ...
m1.h  = if m1.m_flow > 0 then ... else ...

e.g. for 2 connected components:

h_mix = if m1.m_flow > 0 then m2.h else m1.h
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this means that m1,h, m2.h, h_mix etc. are computed by equations 
that contain if -clauses which depend on the mass flow rate .

If algebraic systems of equations occur (due to initialization, or ideal mixing,
or pressure drop components directly connected together etc.), then these 
equation systems, inevitably, have unknowns that depend on the unknown 
mass flow direction, i.e., nasty non-linear equation systems occur that are 
difficult to solve (since Boolean unknowns as iteration variables)!!!



The issue appears even in the most simple case of

MixingVolume – PressureDrop – MixingVolume

connection, if the mass flow rate in the pressure drop does not only depend 
on pressure, but also on density as a function of the medium state:

h1,p1

mixing volume mixing volume

h2,p1 h3,p4 h4,p4

m_flow

pressure drop
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m_flow

h2 = if m_flow > 0 then h4 else h1
h3 = h2;        // !!!!!
d2 = f1(p1,h2)  // density
d3 = f1(p4,h3)

m_flow = f2(p1, p4, d2, d3)

Note: Even for the most simplest case (volume – pressure drop – volume), a nasty 
non-linear equation system appears, since  m_flow = f2(..., m_flow > 0);

Can sometimes be fixed by replacing "m_flow > 0 " with "p4 - p1 > 0 "



h1,p1

mixing volume mixing volume

h2,p1 h3,p4 h4,p4

m_flow

h2 = if m_flow > 0 then h4 else h1
h3 = h2;        // !!!!!
d2 = f1(p1,h2)  // density

pressure drop

Additionally, every pressure drop component is not differentiable
at m_flow = 0 . If non-linear equation systems occur, then this system is
not differentiable at a critical point, and then every non-linear solver has difficulties.
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Major problem : 
Independently of the flow direction: h3 = h2

m_flow > 0:  m_flow = f2(..., d2(p1,h4 ), d3(p4,h4 )); 
m_flow < 0:  m_flow = f2(..., d2(p1,h1 ), d3(p4,h1 ));

However (see next slides): f2(..) must be a function of d2(p1,h1 ), d3(p1,h4 ) !!!

d2 = f1(p1,h2)  // density
d3 = f1(p4,h3)

m_flow = f2(p1, p4, d2, d3)



When m_flow > 0, dp > 0: The "blue" curve (m_flow1) is computed.
When m_flow < 0, dp < 0: The "red" curve (m_flow2) is computed.

When m_flow changes from positive to negative, the interpolation jumps from curve 
"blue" to "red". This means, that m_flow is not differentiable at m_flow = 0 .

If m_flow appears in a non-linear equation system, this is not good, because the
pre-requisite of a non-linear solver is not fulfilled in the critical point at m_flow = 0!!!!

3

4
m_flow1 m_flow2

d(p1,h4 )
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0.0 0.5 1.0 1.5 2.0
-4

-3

-2

-1

0

1

2

pressure drop (dp)

d(p1,h1 )



Correct treatment: m_flow = f2(..) is a function of d2(p1,h1), d3(p1,h4) !!!

-3

-2

-1

0

1

2

3

4
m_flow1 m_flow2 m_flow_desired

d(p1,h1 )

d(p1,h4 )
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In order that the correct f2(..) function is used ("green" curve),
the "density" of the "actual" flow (m_flow > 0 ) and
the "density" of the "reversed flow" (m_flow < 0 ) are needed

at the same time instant . Only then, regularization around m_flow = 0
is possible, leading to a smooth characteristic.

0.0 0.5 1.0 1.5 2.0
-4

-3

pressure drop (dp)



h1,p1

mixing volume mixing volume

h2,p1 h3,p4 h4,p4

m_flow

pressure drop

Summary : 
It is impossible to arrive at reliable, bi-directional flow models, if the actual
intensive quantities (like h_mix, h1, h2, ...) are used in the connector equations.
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Note, the only way to avoid the identified problems is to not compute
h_mix, m1.h , etc. Instead: 

d2_outflow = f1(p1,h4)  // flow from h4 to h1
d3_outflow = f1(p4,h1)  // flow from h1 to h4

m_flow = f2(p1, p4, d2_outflow, d3_outflow)



port_a.h_outflow

inStream (port_a.h_outflow)

Central idea:
a) compute value for "outflow" and 
b) inquire value for "inflow" with operator "inStream (..)"

4. Stream Connection Semantics
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inStream (port_a.h_outflow)

port_a.h_outflow

inStream (port_b.h_outflow)
instream (port_a.h_outflow

port_b.h_outflow



connector FluidPort
SI = Modelica.SIunits;
SI.AbsolutePressure        p         "Pressure in c onnection point";
flow SI.MassFlowRate     m_flow    "Mass flow rate";
stream SI.SpecificEnthalpy h_outflow "h close to port if m _flow < 0";

end FluidPort;

connect(pipe1.port_a, pipe2.port_b);
connect(pipe1.port_a, pipe3.port_b);

Basic connector definition
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pipe1.port_a.m_flow

pipe1.port_a.p = pipe2.port_a.p
pipe1.port_a.p = pipe3.port_a.p
0 = pipe1.port_a.m_flow +

pipe2.port_a.m_flow +
pipe3.port_a.m_flow

pipe2.port_a.m_flow

pipe3.port_a.m_flow

pipe1.port_a.h_outflow

No connection equations are 
generated for stream variables (!)



(1) 0 = m1.c.m_flow*( if m1.c.m_flow > 0 then h_mix else m1.c.h_outflow) +
m2.c.m_flow*( if m2.c.m_flow > 0 then h_mix else m2.c.h_outflow) +
m3.c.m_flow*( if m3.c.m_flow > 0 then h_mix else m3.c.h_outflow)

(2) 0 = m1.c.m_flow + m2.c.m_flow + m3.c.m_flow 

model      : m1,m2,m3;
connector: c;
flow         : m_flow 
stream      : h_outflow

balance equations

(1) 0 = max(m1.c.m_flow,0)*h_mix - max(-m1.c.m_flow,0)*m1.c.h_outflow +
max(m2.c.m_flow,0)*h_mix – max(-m2.c.m_flow,0)*m2.c.h_outflow +
max(m3.c.m_flow,0)*h_mix – max(-m3.c.m_flow,0)*m3.c.h_outflow

(2) 0 =   max( m1.c.m_flow,0) + max( m2.c.m_flow,0) + max(m3.c.m_flow,0)
- max(-m1.c.m_flow,0) – max(-m2.c.m_flow,0) – max(m3.c.m_flow,0) 

(3) h_mix = ( max( - m1.c.m_flow,0)*m1.c.h_outflow +

Overview and Rationale for Stream Connectors - Page 25

m1

m2

m3

h_mix
(h for ideal mixing)

c.h_outflow

(3) h_mix = ( max( - m1.c.m_flow,0)*m1.c.h_outflow +
max(-m2.c.m_flow,0)*m2.c.h_outflow +
max(-m3.c.m_flow,0)*m3.c.h_outflow) /

( max(m1.c.m_flow,0) +
max(m2.c.m_flow,0) +
max(m3.c.m_flow,0)) 

(4) h_mix = ( max(-m1.c.m_flow,0)*m1.c.h_outflow +
max(-m2.c.m_flow,0)*m2.c.h_outflow +
max(-m3.c.m_flow,0)*m3.c.h_outflow) / 

( max(-m1.c.m_flow,0) + 
max(-m2.c.m_flow,0) +
max(-m3.c.m_flow,0)) 

mass balance



(4) h_mix = ( max(-m1.c.m_flow,0)*m1.c.h_outflow +
max(-m2.c.m_flow,0)*m2.c.h_outflow +
max(-m3.c.m_flow,0)*m3.c.h_outflow) / 

( max(-m1.c.m_flow,0) + 
max(-m2.c.m_flow,0) +
max(-m3.c.m_flow,0)) 

Definition:

inStream (m1.c.h_outflow) = h_mix for m1.c.m_flow > 0

Reason: 
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Reason: 

This definition prepares for the changing flow direction at m1.c.m_flow = 0 :
If only m1.c.m_flow is changing the flow direction, then

h_mix is discontinuous at m1.c.m_flow = 0 . 

However,
h_mix for m1.c.m_flow > 0 is continuous at m1.c.m_flow = 0

since m1.c.h_outflow does not appear in the equation, because for
inflowing flow, this variable does not influence the mixing and
the same formula is used also for the reversed direction!!!



(4) h_mix = ( max(-m1.c.m_flow,0)*m1.c.h_outflow +
max(-m2.c.m_flow,0)*m2.c.h_outflow +
max(-m3.c.m_flow,0)*m3.c.h_outflow) / 

( max(-m1.c.m_flow,0) + 
max(-m2.c.m_flow,0) +
max(-m3.c.m_flow,0)) 

inStream(m1.c.h_outflow) = h_mix for m1.c.m_flow > 0Definition:

(5) inStream(m1.c.h_outflow) = ( max(-m2.c.m_flow,0)*m2.c.h_outflow +  
max(-m3.c.m_flow,0)*m3.c.h_outflow) / 

( max(-m2.c.m_flow,0) + max(-m3.c.m_flow, 0)) 
≈ ( max(-m2.c.m_flow, ε)*m2.c.h_outflow +  

max(-m3.c.m_flow, ε)*m3.c.h_outflow) / 
( max( - m2.c.m_flow, ε) + max( - m3.c.m_flow, ε)) 
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( max( - m2.c.m_flow, ε) + max( - m3.c.m_flow, ε)) 

For 2 connections:
(6) inStream(m1.c.h_outflow) = ( max(-m2.c.m_flow,0)*m2.c.h_outflow / 

max(-m2.c.m_flow,0)
= m2.c.h_outflow   

For 3 connections with m3.c.m_flow.min=0 (One-Port Sensor): 
(7) inStream(m1.c.h_outflow) = m2.c.h_outflow
(8) inSteram(m3.c.h_outflow) = ( max(-m1.c.m_flow,0)*m1.c.h_outflow +  

max(-m2.c.m_flow,0)*m2.c.h_outflow) / 
( max(-m1.c.m_flow,0) + max(-m2.c.m_flow, 0)) 



If all mass flow rates are zero , the stream balance equation is identically
fulfilled, independently of the values of h_mix, and mi.c.h_outflow. 
Therefore, there are an infinite number of solutions .

(5) inStream(m1.c.h_outflow) = ( max(-m2.c.m_flow,0)*m2.c.h_outflow +  
max(-m3.c.m_flow,0)*m3.c.h_outflow) / 

( max(-m2.c.m_flow,0) + max(-m3.c.m_flow, 0))

≈ ( max(-m2.c.m_flow ,ε)*m2.c.h_outflow +  
max(-m3.c.m_flow ,ε)*m3.c.h_outflow) / 

( max(-m2.c.m_flow ,ε) + max(-m3.c.m_flow ,ε)) 

The basic idea is to approximate the "max(..) " function to avoid this case:
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Then a unique solution of this equation always exists.

If all mass flow rates are identically to zero , the result is the mean value of
the involved specific enthalpies:

(6) inStream(m1.c.h_outflow) ≈ ( max(-m2.c.m_flow ,ε)*m2.c.h_outflow +  
max(-m3.c.m_flow ,ε)*m3.c.h_outflow) / 

( max(-m2.c.m_flow ,ε) + max(-m3.c.m_flow ,ε)) 
= ( ε*m2.c.h_outflow + ε*m3.c.h_outflow) / ( ε + ε)
= (m2.c.h_outflow + m3.c.h_outflow) / 2



// Actual regularization for small mass flow rates

// Determine denominator s for exact computation
s := sum( max(-mj.c.m_flow,0) )

// Define a "small number" eps ( nominal(v) is the nominal value of v)
eps := relativeTolerance* min( nominal(mj.c.m_flow))

an approximation is only used, if all mass flow rates are small,

the characteristic is continuous and differentiable
(max(.., ε) is continuous but not differentiable)

The actual regularization is a bit more involved, in order that

Overview and Rationale for Stream Connectors - Page 29

eps := relativeTolerance* min( nominal(mj.c.m_flow))

// Define a smooth curve, such that alpha(s>=eps)=1  and alpha(s<=0)=0
// (using a polynomial of 3 rd order)
alpha := smooth(1, if s > eps then 1 else

if s > 0   then (s/eps)^2*(3-2*(s/eps)) else 0);

// Define function positiveMax(v) as a linear combination of max(v,0)
// and of eps along alpha
positiveMax(-mj.c.m_flow) := alpha* max(-mj.c.m_flow,0) + (1-alpha)*eps;

// Use " positiveMax(..)" instead of " max(.., eps)" in the
// inStream(..) definition!



5. Reliable Handling of Ideal Mixing

reference problem
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"DryAirNasa" (ideal gas with f(p,T)) and
"FlueGasSixComponents" (mixture of ideal gases with 6 substances)

Detailed pipe friction correlations for the laminar and turbulent flow regimes

Ideal mixing point (no volume) in the connection point.

All the details are described in a report from M. Sielemann and M. Otter.
Only the major results are presented on the following slides.



(Note: with a volume in the connection 
point there would be 2+6=8 state 
variables, i.e., an implicit DAE solver
would have 8 iteration variables).
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22   Modelica_Fluid (previous version; non-smooth iteration variables; no sim.)

6   ThermoPower (non-smooth iteration variables)

3 Modelica_Fluid (new version with "stream"; smooth iteration variables)

Number of iteration variables for "FlueGasSixComponents"
(mixture of ideal gases with 6 substances)



replaceable package Medium = Modelica.Media.Interfaces.PartialMedium;
Medium.BaseProperties medium_a_inflow;
Medium.BaseProperties medium_b_inflow;

equation
medium_a_inflow.p = port_a.p;
medium_b_inflow.p = port_b.p;
medium_a_inflow.h = inStream(port_a.h_outflow);
medium_b_inflow.h = inStream(port_b.h_outflow);
port_a.h_inflow   = medium_a_inflow.h;
port_b.h_inflow   = medium_b_inflow.h;  
port_a_d_inflow   = medium_a_inflow_d;

Basic (previous) form of "pressure drop" component:
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port_a_d_inflow   = medium_a_inflow_d;
port_b_d_inflow   = medium_b_inflow_d;;

If medium is not f(p.h), a non-linear equation system appears, in order to compute
medium_a_inflow.h from medium_a_inflow.T (and from the pressure).
For an ideal mixing point (or any other non-linear equation system), a tool will
therefore select T as iteration variable.



Severe disadvantage: Temperature is discontinuous and therefore the
iteration variable is discontinuous!!!

T as iteration variable
(discontinuous)
-> at m_flow = 0, jump
in iteration variable;
every non-linear solver
has difficulties with this.
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m_flow as
iteration variable
(continuous)



replaceable package Medium = Modelica.Media.Interfaces.PartialMedium; 
equation

port_a.h_outflow    = inStream(port_b.h_outflow);
port_b.h_outflow    = inStream(port_a.h_outflow);
port_a_state_inflow = Medium.setState_phX(

port_a.p, inStream(port_a.h_outflow),...);
port_b_state_inflow = Medium.setState_phX(

port_b.p, inStream(port_b.h_outflow),...);
port_a_inflow = Medium.density(port_a_state_inflow) ;
port_b_inflow = Medium.density(port_b_state_inflow) ;

New form of "pressure drop" component:
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If medium is not f(p.h), no (explicit) non-linear equation system appears, since the
medium state is computed from the known port properties.

However, the function "setState_phX" solves internally a non-linear equation system
(with Brents algorithm; a fast and very reliable algorithm to solve one non-linear
algebraic equation in one unknown).



A tool can now compute all variables in a point with N connections from

N-1 mass flow rates and 1 pressure

in an explicit forward sequence and therefore selects these variables
as iteration variables (and these variables are always continuous):

1. The N-th mass flow rate is computed from the mass balance

2. The port-specific mixing enthalpies (h_mix(m_flow_i = 0)) can be 
computed, since they depend only on known variables
(enthalpies in the volumes and the mass flow rates).

3. The medium states can be computed via Medium.setState_phX(..),
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3. The medium states can be computed via Medium.setState_phX(..),
since p,h,X are known now.

4. All medium properties can be computed from the medium state, 
especially the density.

5. Via the momentum balance, the mass flow rates can be computed
(= residue equations).

Analysis does also hold for initialization : With this approach, initialization will
work much better, since mass flow rates are selected as iteration variables.
A default start value of zero for mass flow rates is often sufficient for the solver.



Summary

If the "streams" concept is used, and the pressure drop components are 
implemented as sketched in the previous slide, then an ideal mixing point with 
N connections gives rise to a non-linear system of algebraic equations
(if N > 2 and no min-attributes are set) that has the following properties:

The number of iteration variables is N (independent of the medium, and 
how many substances are in the medium).

The iteration variables are continuous everywhere
(since as iteration variables, N-1 mass flow rates and one pressure is 
used).

The iteration variables are in most cases differentiable
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The iteration variables are in most cases differentiable
(due to the definition of stream-variables and of the inStream (..) operator).
The iteration variables are not differentiable, if all mass flow rates in an 
ideal mixing point become zero at the same time instant.
If this is not the case, they are differentiable.

Default start values of zero for the mass flow rates and for the pressure 
drop in the pressure drop components, are good guess values for the
iteration variables (independent of the medium).

It can therefore be expected that a solution of the equation system is easy
to compute by every reasonable non-linear equation solver.



6. Open Issues

For a regular network of the usual "Volume – Pressure Drop – Volume" 
structure a non-linear algebraic equation in one unknown is present for 
every connector of a pressure drop component, if the medium states are
not p,h,X . It seems possible to remove all these equation systems by clever 
symbolic analysis. This issue is not critical, because these scalar implicit 
equations can be solved reliably. The only issue is to enhance efficiency.

If components from discretized PDEs are connected together, there are two 
options with respect to the mathematical structure. 
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One option is to split the momentum balance between two components in 
two parts , leading to two half-momentum-balances on either side of the 
connection. This results in one non-linear algebraic equation in one 
unknown (the pressure) for every connection point, which can be 
numerically troublesome, expecially at initialization. 

The other option is to split the mass and energy balances in two parts, 
leading to two half-mass-balances on either side of the connection. This 
results in a high-index problem. If the tool can handle the index reduction, 
the resulting equations can be solved reliably

Both options are available in the DistributedPipe model of Modelica_Fluid



7. Status

Detailed specification text for Modelica 3.1 available

(Positive) voting for the specification text for inclusion in Modelica 3.1

Fully functional implementation in Dymola available (version 7.1 and later)

Work going on to implement the concept in OpenModelica and MathModelica

Final release of Modelica_Fluid library v.1.0 changed to new connector design

Detailed tests with sandbox libraries by Rüdiger Franke and Michael Sielemann

All examples of Modelica_Fluid simulate without problems
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All examples of Modelica_Fluid simulate without problems

Initialization parameters removed from all pressure drop coefficients
(no longer needed, since m_flow used as iteration variable; default of 
m_flow.start = 0 is a good guess value; a better one can be provided via a 
parameter)

Plan: Tests in EUROSYSLIB with larger and realistic benchmarks.



No special symbolic transformation algorithms needed!

Connection semantic is trivial:
Generate no connection equation for stream variables

The inStream (..) operator requires to analyze all corresponding stream-
variables in a connection set (e.g. with respect to "min(..)" attributes).
A tool could decide to only support 1:1 connections in the beginning.
The inStream (..) operator is then trivial to implement.

Inside/outside connections (= hierarchical connections) complicate 

The tool requirements for "stream" support is very modest:
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Inside/outside connections (= hierarchical connections) complicate 
issues a bit (similarly to flow-variables), but nothing serious



8. History and Contributors

2002:ThermoPower connectors by Francesco Casella
(this is the basis of the stream connector concept)

2002: First version of Modelica_Fluid that is refined until 2008.
Many basic concepts are from Hilding Elmqvist.
It was never possible to make the library reliable.

Jan. 2008: upstream(..) operator by Hilding Elmqvist
(triggered the further development)

Jan. 2008: new formulation of "ideal mixing" from Francesco Casella
(this is the basis of the inStream(..) operator)
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March 2008: proposal of "stream" connectors by Rüdiger Franke

April 2008: refined proposal by Rüdiger Franke & Martin Otter,
prototype in Dymola by Sven Erik Mattsson,
improved definition of inside/outside connector by Hans Olsson,
test of the concept by Rüdiger Franke and Michael Sielemann,
reformulation to improve the numerics by M. Sielemann and M. Otter,
transformation of Modelica_Fluid to streams by M. Otter

May 2008: final proposal developed by Modelica fluid group at the
57th design meeting and (positive) vote for inclusion in Modelica 3.1. 

Jan 2009: Modelica_Fluid 1.0 released, based on stream connectors


